
Hadley Wickham
Assistant Professor / Dobelman Family Junior Chair

Department of Statistics / Rice University

Data manipulation

June 2012
Wednesday, June 13, 12

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

1. US baby names data

2. Loading data

3. Subsetting

4. Transforming & summarising

5. Group-wise transformations &
summaries

Wednesday, June 13, 12

CC BY http://www.flickr.com/photos/the_light_show/2586781132

Baby names
Top 1000 male and female baby
names in the US, from 1880 to
2008.
258,000 records (1000 * 2 * 129)
But only five variables: year,
name, soundex, sex and prop.

Wednesday, June 13, 12

http://www.flickr.com/photos/the_light_show/2586781132
http://www.flickr.com/photos/the_light_show/2586781132

Getting started
library(plyr)
library(ggplot2)

options(stringsAsFactors = FALSE)

Big data tip: read compressed files directly
bnames <- read.csv("bnames2.csv.bz2")

births <- read.csv("births.csv")
bnames <- join(bnames, births, by = c("year", "sex"))
bnames <- mutate(bnames, n = round(prop * births))

Wednesday, June 13, 12

Your turn

Extract your name from the dataset:
hadley <- subset(bnames, name == "Hadley")

Plot the trend over time. Guess which
geom you should use? Do you need any
extra aesthetics?

Wednesday, June 13, 12

hadley <- subset(bnames, name == "Hadley")

qplot(year, prop, data = hadley, colour = sex,
 geom ="line")
:(

Wednesday, June 13, 12

Use the soundex variable to extract all
names that sound like yours. Plot the
trend over time.
Do you have any difficulties? Think about
grouping.

Your turn

Wednesday, June 13, 12

gabi <- subset(bnames, soundex == "G164")
qplot(year, prop, data = gabi)
qplot(year, prop, data = gabi, geom = "line")

qplot(year, prop, data = gabi, geom = "line",
 colour = sex) + facet_wrap(~ name)

qplot(year, prop, data = gabi, geom = "line",
 colour = sex, group = interaction(sex, name))

Wednesday, June 13, 12

year

pr
op

0.001

0.002

0.003

0.004

0.005

1880 1900 1920 1940 1960 1980 2000

sex
boy
girl

Sawtooth appearance
implies grouping is incorrect.

Wednesday, June 13, 12

Slicing
and dicing

Wednesday, June 13, 12

Function Package

subset base

summarise plyr

mutate plyr

arrange plyr

They all have similar syntax. The first argument
is a data frame, and all other arguments are
interpreted in the context of that data frame.
Each returns a data frame.

Wednesday, June 13, 12

subset(df, color == "blue")

color value
blue 1
black 2
blue 3
blue 4
black 5

color value
blue 1
blue 3
blue 4

Wednesday, June 13, 12

mutate(df, double = 2 * value,
quadruple = 2 * double)

color value
blue 1
black 2
blue 3
blue 4
black 5

color value double
blue 1 2
black 2 4
blue 3 6
blue 4 8
black 5 10

Wednesday, June 13, 12

summarise(df, double = 2 * value)

color value
blue 1
black 2
blue 3
blue 4
black 5

double
2
4
6
8
10

Wednesday, June 13, 12

summarise(df, total = sum(value))

color value
blue 1
black 2
blue 3
blue 4
black 5

total
15

Wednesday, June 13, 12

arrange(df, color)

color value
4 1
1 2
5 3
3 4
2 5

color value
1 2
2 5
3 4
4 1
5 3

Wednesday, June 13, 12

arrange(df, desc(color))

color value
4 1
1 2
5 3
3 4
2 5

color value
5 3
4 1
3 4
2 5
1 2

Wednesday, June 13, 12

Your turn
Using the data frame containing your
name:
Reorder from highest to lowest popularity.
Calculate the total number of people with
your name, and the average number of
people given your name each year
Add a new column that stores the rank of
each year according to n

Wednesday, June 13, 12

arrange(hadley, desc(prop))

summarise(hadley,
 total = sum(n),
 avg = mean(n),
 avg2 = sum(n) / 129)

mutate(hadley, rank = rank(desc(prop)))

Wednesday, June 13, 12

Brainstorm

Thinking about the data, what are some
of the trends that you might want to
explore? What additional variables would
you need to create? What other data
sources might you want to use?
Pair up and brainstorm for 2 minutes.

Wednesday, June 13, 12

External Internal

Biblical names
Hurricanes
Ethnicity

Famous people

First/last letter
Length
Vowels
Rank

Sounds-like

join ddply

Wednesday, June 13, 12

library(stringr)

vowels <- function(x) {
 str_length(str_replace_all(tolower(x),
 "[^aeiouy]", ""))
}

bnames <- mutate(bnames,
 first = tolower(str_sub(name, 1, 1)),
 last = tolower(str_sub(name, -1, -1)),
 vowels = vowels(name),
 length = str_length(name),
 per10000 = 10000 * prop,
 one_per = 1 / prop
)

Wednesday, June 13, 12

Group-wise
transformations

Wednesday, June 13, 12

Number of people

How do we compute the number of
people with each name over all years? It’s
pretty easy if you have a single name.
How would you do it?

Wednesday, June 13, 12

hadley <- subset(bnames, name == "Hadley")
sum(hadley$n)

Or
summarise(hadley, n = sum(n))

But how could we do this for every name?

Wednesday, June 13, 12

Split
pieces <- split(bnames, list(bnames$name))

Apply
results <- vector("list", length(pieces))
for(i in seq_along(pieces)) {
 piece <- pieces[[i]]
 results[[i]] <- summarise(piece,
 name = name[1], n = sum(n))
}

Combine
result <- do.call("rbind", results)

Wednesday, June 13, 12

Or equivalently

counts <- ddply(bnames, "name", summarise,
 n = sum(n))

Wednesday, June 13, 12

Or equivalently

counts <- ddply(bnames, "name", summarise,
 n = sum(n))

Input data

2nd argument
to summarise()

Way to split
up input

Function to apply to
each piece

Wednesday, June 13, 12

Even faster is the special purpose count function:
counts <- count(bnames, "name", "n")

Often where special purpose functions exist they
will be faster. Emphasis in plyr is on clearly
expressing what you want, not on speed.
(Hopefully next version will combine the best of
both worlds)

Wednesday, June 13, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

Wednesday, June 13, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

x y

a 2
a 4

b 0
b 5

c 5
c 10

Split

x y

x y

Wednesday, June 13, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

x y

a 2
a 4

b 0
b 5

c 5
c 10

Split

x y

x y

3

2.5

7.5

Apply

Wednesday, June 13, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

x y

a 2
a 4

b 0
b 5

c 5
c 10

Split

x y

x y

3

2.5

7.5

Apply

a 3
b 2.5
c 7.5

Combine

x y

Wednesday, June 13, 12

What if we want to compute the rank of a
name within a sex and year?
This task is easy if we have a single year
& sex, but hard otherwise.

Rank

Wednesday, June 13, 12

What if we want to compute the rank of a
name within a sex and year?
This task is easy if we have a single year
& sex, but hard otherwise.

Rank

Take two minutes to think about how
 you might attack such a problem

Wednesday, June 13, 12

one <- subset(bnames, sex == "boy" & year == 2008)
one <- mutate(one,
 rank = rank(desc(prop), ties.method = "min"))
head(one)

What if we want to transform
every sex and year?

To rank in
descending order

Usual method of
dealing with ties

Wednesday, June 13, 12

bnames <- ddply(bnames, c("sex", "year"), mutate,
 rank = rank(desc(prop), ties.method = "min"))

Input data

2nd argument
to transform()

Way to split
up input

Function to apply to
each piece

Wednesday, June 13, 12

In a similar way, we can use ddply() for
group-wise summaries.
There are many base R functions for
special cases. Where available, these are
often much faster; but you have to know
they exist, and have to remember how to
use them.

Summaries

Wednesday, June 13, 12

Explore average length

sy <- ddply(bnames, c("sex", "year"), summarise,
 avg_length = weighted.mean(length, prop))

qplot(year, avg_length, data = sy, colour = sex,
 geom = "line")

Wednesday, June 13, 12

Explore number of names of each length

syl <- ddply(bnames, c("sex", "length", "year"),
 summarise, prop = sum(prop))
qplot(year, prop, data = syl, colour = sex,
 geom = "line") + facet_wrap(~ length)

twoletters <- subset(bnames, length == 2)
unique(twoletters$name)
qplot(year, prop, data = twoletters, colour = sex,
 geom = "line") + facet_wrap(~ name)

Wednesday, June 13, 12

Use these tools to explore how the
following have changed over time:
The number of vowels in a name.
The distribution of first (or last) letters.
The total proportion of babies with names
in the top 1000, or top 100 or top 10.

Your turn

Wednesday, June 13, 12

vys <- ddply(bnames, c("vowels", "year", "sex"),
 summarise, prop = sum(prop))
qplot(year, prop, data = vys, colour = sex,
 geom = "line") + facet_wrap(~ vowels)

syl <- ddply(bnames, c("sex", "last", "year"),
 summarise, prop = sum(prop))
qplot(year, prop, data = syl, colour = sex,
 geom = "line") + facet_wrap(~ last)

sy <- ddply(bnames, c("year","sex"), summarise,
 prop = sum(prop))
qplot(year, prop, data = sy, colour = sex,
 geom = "line")

Wednesday, June 13, 12

Challenges

Wednesday, June 13, 12

Warmups

Which names were most popular in 1999?
Work out the average yearly usage of
each name.
List the 10 names with the highest
average proportions.

Wednesday, June 13, 12

Which names were most popular in 1999?
subset(bnames, year == 1999 & rank < 10)
n1999 <- subset(bnames, year == 1999)
head(arrange(n1999, desc(prop)), 10)

Average usage
overall <- ddply(bnames, "name", summarise,
 prop1 = mean(prop),
 prop2 = sum(prop) / 129)

Top 10 names
head(arrange(overall, desc(prop)), 10)

Wednesday, June 13, 12

How has the total proportion of babies
with names in the top 1000 changed over
time?
How has the popularity of different initials
changed over time?

Challenge 1

Wednesday, June 13, 12

sy <- ddply(bnames, c("year","sex"), summarise,
 prop = sum(prop),
 npop = sum(prop > 1/1000))

qplot(year, prop, data = sy, colour = sex,
 geom = "line")
qplot(year, npop, data = sy, colour = sex,
 geom = "line")

Wednesday, June 13, 12

init <- ddply(bnames, c("year","first"), summarise,
 prop = sum(prop)/2)

qplot(year, prop, data = init, colour = first,
 geom = "line")

Wednesday, June 13, 12

Challenge 2

For each name, find the year in which it
was most popular, and the rank in that
year. (Hint: you might find which.max
useful).
Print all names that have been the most
popular name at least once.

Wednesday, June 13, 12

most_pop <- ddply(bnames, "name", summarise,
 year = year[which.max(prop)],
 rank = min(rank))
most_pop <- ddply(bnames, "name", subset,
 prop == max(prop))

subset(most_pop, rank == 1)

Double challenge: Why is this last one wrong?

Wednesday, June 13, 12

Challenge 3

What name has been in the top 10 most
often?
(Hint: you'll have to do this in three steps.
Think about what they are before starting)

Wednesday, June 13, 12

top10 <- subset(bnames, rank <= 10)
counts <- count(top10, c("sex", "name"))

ddply(counts, "sex", subset, freq == max(freq))
head(arrange(counts, desc(freq)), 10)

Wednesday, June 13, 12

For each soundex, find the most common
name in that group

Challenge 4

Wednesday, June 13, 12

names <- count(bnames2, c("soundex", "name"), "n")

ddply(names, "soundex", subset, freq == max(freq))

Wednesday, June 13, 12

More
about plyr

Wednesday, June 13, 12

Many problems involve splitting up a large
data structure, operating on each piece
and joining the results back together:

split-apply-combine

Wednesday, June 13, 12

How you split up depends on the type of
input: arrays, data frames, lists
How you combine depends on the type of
output: arrays, data frames, lists,
nothing

Wednesday, June 13, 12

array data frame list nothing

array

data frame

list

n replicates

function
arguments

aaply adply alply a_ply

daply ddply dlply d_ply

laply ldply llply l_ply

raply rdply rlply r_ply

maply mdply mlply m_ply

Wednesday, June 13, 12

Fiddly details

Labelling
Progress bars
Consistent argument names
Missing values / Nulls

Wednesday, June 13, 12

http://plyr.had.co.nz

Wednesday, June 13, 12

http://plyr.had.co.nz
http://plyr.had.co.nz

Wednesday, June 13, 12

This work is licensed under the Creative
Commons Attribution-Noncommercial 3.0 United
States License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc/
3.0/us/ or send a letter to Creative Commons,
171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

Wednesday, June 13, 12

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/

